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1 Introduction

For the next several weeks we will be looking at elliptic equations of the form

Lu =
n∑

i,j=1

aij(x)Diju+
n∑
i=1

bi(x)Diu+ c(x)u = f(x) in Ω. (1)

Now let’s discuss what the parts of this equation mean. In the process we will discuss some of the
notation for this course. Here:

• Let U be an open set in Rn. We let C0(U) denote the space of all continuous real-valued
functions on U . For k = 1, 2, 3, . . ., we let Ck(U) denote the space of all real-valued functions
on U for which all derivatives up to order k exist and are continuous on U . We let C∞ denote
the space of all real-valued functions on U for which all derivatives exist up to all orders.

• Di = ∂/∂xi is the standard partial derivative in the xi-direction, Dij = ∂2/∂xi∂xj is the
second order mixed partial derivative in the xi and xj directions. In particular Diu and Diju
are derivatives of u. Note that more generally we will use multi-index notation where

α = (α1, α2, . . . , αn)

for integers αi ≥ 0 and

Dα = Dα1
1 Dα2

2 · · ·Dn, |α| = α1 + α2 + · · ·+ αn.

• Ω is a domain, i.e. a connected open set, in Rn.

• We say Ω is a Ck domain for k ≥ 1 if for every point y in ∂Ω = Ω \ Ω, there exists a δ > 0
and Ck diffeomorphism Ψ : Bδ(y)→ Rn such that

Ψ(Ω ∩Bρ(y)) = {x = (x1, x2, . . . , xn) ∈ B1(0) : xn > 0},
Ψ(∂Ω ∩Bρ(y)) = {x = (x1, x2, . . . , xn) ∈ B1(0) : xn = 0}.

• u ∈ C2(Ω).

• aij, bi, c : Ω → R are functions on Ω, called the coefficients of L. We shall assume WLOG
that aij = aji.
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• f : Ω→ R is also a function on Ω.

• The L is the linear map, called an operator, from C2(Ω) to real-valued functions on Ω given
by

Lu =
n∑

i,j=1

aij(x)Diju+
n∑
i=1

bi(x)Diu+ c(x)u.

• Ellipticity condition: Recall that

λ(x)|ξ|2 ≤
n∑

i,j=1

aij(x)ξiξj ≤ Λ(x)|ξ|2 for every x ∈ Ω, ξ ∈ Rn

where λ(x) and Λ(x) are the minimum and maximum eigenvalues respectively of the n× n
symmetric matrix (aij)i,j=1,...,n. We say that the equation (1) or the operator L is

(i) elliptic if λ(x) > 0 for all x ∈ Ω,

(ii) strictly elliptic if λ(x) ≥ λ0 > 0 for all x ∈ Ω and some constant λ0 > 0, or

(iii) uniformly elliptic if λ(x) > 0 for all x ∈ Ω and supx∈Ω Λ(x)/λ(x) <∞.

Note that we can always assume L is strictly elliptic since if L is elliptic then 1
λ
L is strictly

elliptic.

We will often write (1) in Einstein notation,

Lu = aij(x)Diju+ bi(x)Diu+ c(x)u = f(x) in Ω,

where the Σ denoting sums are omitted and repeated indices denote sums.

Related to equations of this form is the Dirichlet problem

Lu = f in Ω,

u = ϕ on ∂Ω, (2)

where L is the elliptic operator from above, ∂Ω = Ω\Ω is the frontier or boundary of Ω, f : Ω→ R
is a function, and ϕ : ∂Ω→ R is a function called the boundary data.

When reading theorems in this class, it will be important to know:

• The topological properties of Ω: Is Ω an open set or a domain? Is Ω bounded or unbounded?

• The regularity of Ω, i.e. is Ω a Ck domain?

• The starting regularity of u both in Ω and up to the boundary of Ω. For example, we might
assume u ∈ C0(Ω) ∩ C2(Ω).

• Ellipticity condition: Is L elliptic, strictly elliptic, or uniformly elliptic?

• Regularity of the coefficients aij, bi, and c, i.e. whether the coefficients are bounded, contin-
uous, in Ck, etc, and any bounds on the coefficients.

• Sign of c.

• Regularity assumptions on f and ϕ, i.e. whether they are bounded, continuous, in Ck, etc.
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2 Example: Poisson equation

The Poisson equation is an elliptic equation of the form

∆u =
n∑
i=1

∂2u

∂x2
i

= f in Ω.

It is obvious that ∆ is a uniformly elliptic operator as λ = Λ = 1 on Ω. When f = 0 on Ω, we
obtain the Laplace equation

∆u = 0 in Ω.

Solutions to the Laplace equation are called harmonic functions. A function u is harmonic if and
only if u minimizes the energy functional

E(u) =
1

2

∫
Ω

|Du|2

with the constraint that u = ϕ on ∂Ω for some continuous real-valued function ϕ on ∂Ω. (See
Example Sheet 1)

3 Three main questions

In this course, there are three main questions we want to ask about our elliptic operator L and
the Dirichlet problem for L:

1. Uniqueness: Is there at most one solution to the Dirichlet problem (2)?

2. Existence: Is there at least one solution to the Dirichlet problem (2)?

3. Regularity: Suppose u is a solution to either (1) or (2). Then what can we say about the
regularity of u, i.e. the extent to which we can take derivatives of u and still obtain a
continuous (or L2) function?

An answer to these questions, we need to build up the following tools:

• Maximum principle: A solution to Lu = 0 in Ω obtains its maximum value on the boundary
of Ω.

• A priori estimates for the Dirichlet problem: supΩ |u| ≤ sup∂Ω |ϕ|+ C supΩ |f |.

• Schauder estimates for the Dirichlet problem: ‖u‖C2,µ(Ω) ≤ C(supΩ |u|+‖f‖C0,µ(Ω)+‖ϕ‖C2,µ(∂Ω)).

Note that these are rough statements of the tools and that there are some important hypotheses
that I am not mentioning at the moment. We will spend a number of lectures building up the
tools and a number of more lectures addressing the answers to the three main questions above
from there.
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4 First theorem: Weak Maximum Principle

Theorem 1. (Weak Maximum Principle) Let Ω be a bounded open set in Rn. Suppose u ∈
C0(Ω) ∩ C2(Ω) satisfies

Lu = aijDiju+ biDiu+ cu ≥ 0 in Ω

for some functions aij, bi, and c on Ω. Suppose L is an elliptic operator and

sup
Ω

|bi|
λ

+ sup
Ω

|c|
λ
<∞.

Suppose c ≤ 0 on Ω. Then
sup

Ω
u ≤ sup

∂Ω
u+,

where u+(x) = max{u(x), 0} at each x ∈ Ω. Moreover, if Lu = 0 in Ω, then

sup
Ω
|u| ≤ sup

∂Ω
|u|. (3)

To see how the Lu = 0 in Ω case follows from the more general case of Lu ≥ 0 in Ω, observe
that since Lu = 0 in Ω, u+ attains its maximum value on the boundary of Ω. Since L(−u) = 0 in
Ω, we also get a minimum principle that u−(x) = min{u(x), 0} attains its minimum value on the
boundary of Ω. Thus in effect u attains its maximum and minimum values on the boundary of Ω
and (3) follows.

Corollary 1. (Uniqueness of Solutions to the Dirichlet Problem) Let Ω be a bounded open set in
Rn. Consider the Dirichlet problem

Lu = aijDiju+ biDiu+ cu = f in Ω,

u = ϕ on ∂Ω,

for some functions aij, bi, c, and f on Ω and ϕ ∈ C0(∂Ω) such that L is an elliptic operator,

sup
Ω

|bi|
λ

+ sup
Ω

|c|
λ
<∞,

and c ≤ 0 in Ω. Then there is at most one solution u ∈ C0(Ω) ∩ C2(Ω) to the Dirichlet problem
(i.e. there may be no solution or a unique solution but there cannot be two or more solutions).

Proof. Suppose u1 and u2 are two solutions to the Dirichlet problem. Then w = u1 − u2 satisfies

Lw = 0 in Ω,

w = 0 on ∂Ω.

By the Weak Maximum Principle,

sup
Ω
|w| ≤ sup

∂Ω
|w| = 0.

Therefore w = u1 − u2 = 0 on Ω, i.e. u1 = u2 on Ω. (Note how uniqueness of solutions to the
Dirichlet problem correspond to there being a solution to Lw = 0 in Ω and w = 0 on ∂Ω other
than the trivial solution w ≡ 0.)
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